
brain
sciences

Article

Association between Structural Connectivity and
Generalized Cognitive Spectrum in Alzheimer’s Disease

Angela Lombardi 1 , Nicola Amoroso 1,2 , Domenico Diacono 1 , Alfonso Monaco 1,* ,
Giancarlo Logroscino 3,4, Roberto De Blasi 5, Roberto Bellotti 1,6,† and Sabina Tangaro 1,7,*,†

1 Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy; angela.lombardi@ba.infn.it (A.L.);
nicola.amoroso@uniba.it (N.A.); domenico.diacono@ba.infn.it (D.D.); roberto.bellotti@ba.infn.it (R.B.)

2 Dipartimento di Farmacia–Scienze del Farmaco, Università degli Studi di Bari, 70125 Bari, Italy
3 Center for Neurodegenerative Diseases and the Aging Brain, Università degli Studi di Bari at Pia

Fondazione “Card. G. Panico”, 73039 Tricase, Italy; giancarlo.logroscino@uniba.it
4 Department of Basic Medicine Neuroscience and Sense Organs, Università degli Studi di Bari,

70124 Bari, Italy
5 Pia Fondazione “Card. G. Panico”, 73039 Tricase, Italy; robertodeblasi@hotmail.com
6 Dipartimento Interateneo di Fisica, Università degli Studi di Bari, 70126 Bari, Italy
7 Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari,

70126 Bari, Italy
* Correspondence: alfonso.monaco@ba.infn.it (A.M.); sabina.tangaro@uniba.it (S.T.)
† Both authors contributed equally to this work.

Received: 8 October 2020; Accepted: 17 November 2020; Published: 20 November 2020
����������
�������

Abstract: Modeling disease progression through the cognitive scores has become an attractive
challenge in the field of computational neuroscience due to its importance for early diagnosis of
Alzheimer’s disease (AD). Several scores such as Alzheimer’s Disease Assessment Scale cognitive total
score, Mini Mental State Exam score and Rey Auditory Verbal Learning Test provide a quantitative
assessment of the cognitive conditions of the patients and are commonly used as objective criteria for
clinical diagnosis of dementia and mild cognitive impairment (MCI). On the other hand, connectivity
patterns extracted from diffusion tensor imaging (DTI) have been successfully used to classify AD
and MCI subjects with machine learning algorithms proving their potential application in the clinical
setting. In this work, we carried out a pilot study to investigate the strength of association between
DTI structural connectivity of a mixed ADNI cohort and cognitive spectrum in AD. We developed
a machine learning framework to find a generalized cognitive score that summarizes the different
functional domains reflected by each cognitive clinical index and to identify the connectivity
biomarkers more significantly associated with the score. The results indicate that the efficiency
and the centrality of some regions can effectively track cognitive impairment in AD showing a
significant correlation with the generalized cognitive score (R = 0.7).

Keywords: alzheimer’s disease; biomarker identification; machine learning; brain connectivity;
diffusion tensor imaging

1. Introduction

Alzheimer’s disease (AD) is a widespread neurodegenerative disease that causes irreversible and
progressive memory loss, resulting in the decline of intellectual and social skills [1]. The early stages of
AD are characterized by mild memory problems, hence great efforts have been done in investigating
effective markers for early diagnosis of the disease in order to improve care and treatment pathways
or find innovative personalized drug therapies [2,3]. Moreover, the amnestic onset in AD is by large
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the most prevalent, but it is important to note that atypical onset (with frontal and posterior cortical
variants) have an incidence of about 20% [4].

Several tests provide information about the neuropsychological conditions of patients and
measure the severity of the most important symptoms of AD. The most commonly used cognitive
indices include: Alzheimer’s Disease Assessment Scale cognitive total score (ADAS), Mini Mental
State Exam score (MMSE) and Rey Auditory Verbal Learning Test (RAVLT) which measures cognitive
impairment, attention, language and visuospatial functions and memory deficits. Such scores provide a
quantitative assessment of the cognitive conditions of the patients, and they are used as objective criteria
for clinical diagnosis of dementia [5,6]. As a matter of fact, modeling disease progression through the
cognitive scores has become an attractive challenge in the field of computational neuroscience due to
its importance for early diagnosis of AD [7,8].

The AD progression can also be accurately observed by using magnetic resonance imaging (MRI).
Several MRI features have been associated with cognitive scores in AD such as average regional
cortical thickness, white matter (WM) volume [9], cortical surface area, tissue volume and gray matter
density (GM) [10–12] . Early works focused on simple regression models to predict selected cognitive
outcomes. More recently, several studies have proposed multivariate learning methods in order to
improve the predictive performance and identify the most relevant imaging biomarkers [13].

An ever-increasing number of works is dedicated to the study of brain connectivity in Alzheimer’s
disease [14]. Indeed, the recent literature highlights that the AD decline is associated to disrupted
connectivity among brain regions caused by degeneration of white matter (WM) [15]. In particular,
diffusion weighted imaging (DWI) has become the most popular technique to investigate the physical
connection among WM fibers, i.e., the structural connectivity [16,17]. DWI and tractography algorithms
are combined to define diffusion tensor imaging (DTI) structural networks that could be analyzed
through complex network models [18–20]. This approach involves modeling the brain as a network of
anatomical regions linked by WM fiber tracts. Hence, connectivity patterns could be investigated by
using several topological network metrics describing the roles of the regions, the structure of paths
connecting them and their importance for the network integrity [21]. Very accurate classification
of AD and MCI subjects has been achieved by combining complex network modeling and machine
learning (ML) algorithms proving the potential applications of structural DTI networks in the clinical
setting [22–24].

We carried out a pilot study to investigate the strength of association between DTI structural
connectivity and cognitive spectrum in Alzheimer’s disease. Our hypothesis is based on the
assumption that, if some structural connectivity patterns are efficiently used to classify groups of
pathological and MCI subjects, then connectivity configurations could exist to shape the cognitive
decline spectrum. Our goal is predicting the cognitive decline on a continuum range of values instead
of using distinct diagnostic labels in order to better characterizes the cognitive changes at individual
level. Hence, we firstly summarized the cognitive domains by using a single generalized data-driven
score. Then, we used a machine learning framework with the twofold aim to: (i) test the strength
of association between the cognitive score and the structural connectivity of subjects with a broad
spectrum of decline; and (ii) identify the biomarkers of structural connectivity more significantly
associated with the generalized score.

2. Materials

2.1. Subjects

A dataset from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.
loni.usc.edu/) was used in this work. In 2003, ADNI was initiated as a multi-site longitudinal study
involving multiple biological markers and clinical and neuropsychological tests to determine the
progression of early AD. The goal of recognizing responsive and precise markers of AD progression
is to help researchers to develop new therapies and monitor their validity, as well as to reduce costs

http://adni.loni.usc.edu/
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and length of clinical trials. The images analyzed for this study belong to 191 subjects, both male
and female. In accordance with the diagnosis, the subjects were grouped into 48 normal controls
(NC) (age 73.4± 5.7), 39 AD patients (age 75.4± 8.8) and 104 MCI converter subjects (age 72.8± 7.4),
i.e., MCI that converted to AD from 3 months to 5 years after the date of scan. NC subjects show no
signs of depression, MCI or dementia. Participants with AD are those who meet the NINCDS/ADRDA
criteria for probable AD. MCI subjects have reported a subjective memory concern, but without any
significant impairment in other cognitive domains: they substantially preserved everyday activities
with no sign of dementia.

Each subject underwent a cognitive assessment including mini-mental state examination test
(MMSE) (scores below 24 indicate impairment) and Alzheimer’s disease assessment scale (ADAS)
(scores less than or equal to 10 may be considered in the normal range) and other tests described
in Section 2.2. Demographic information and clinical scores for the participants are listed in
Table 1. The diffusion-weighted scans were acquired using a 3T GE Medical Systems scanner.
For each subject, we considered both T1-weighted 3D anatomical spoiled gradient echo (SPGR)
sequences (256× 256 matrix; voxel size = 1.2 × 1.0 × 1.0 mm3; TI = 400 ms; TR = 6.98 ms;
TE = 2.85 ms; flip angle = 11◦) and diffusion weighted images (256 × 256 matrix with a field of
view of 35 cm; voxel size = 2.7 × 2.7 × 2.7 mm3; scan time = 9 min; repetition time/echo time
= 9 s/60 ms; flip angle = 90◦). More specifically, 46 separate DWI images were acquired for each scan:
5 with negligible diffusion effects (b0 images) and 41 diffusion-weighted images (b = 1000 s/mm2).
More details can be found at: http://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNI2_GE_
3T_22.0_T2.pdf.

Table 1. Demographic and clinical scores (mean ± standard deviation) of the study participants.

NC (48) AD (39) MCI (104)

Age 73.4± 5.7 75.4± 8.8 72.8± 7.4
Gender 24 M/24 F 26 M/13 F 64 M/40 F

CDR-SOB 0.04± 0.13 4.8± 1.3 1.41± 0.7
Adas-Cog 13 9± 4.7 30.9± 8.7 15.9± 6.7

MMSE 29± 1.1 23± 1.8 27± 1.6
MoCA 25.6± 2.1 17.5± 4.3 22.9± 2.7
FAQ 0.23± 0.92 15.1± 6.9 2.7± 4

RAVLT-immed 44.3± 10.4 21.3± 6.7 34.1± 9.6
RAVLT-learn 5.12± 2.3 2± 1.9 4.3± 2.1

RAVLT-percforg 36.2± 28.2 89± 19.4 56.8± 32
ECog-PT-total 1.2± 0.2 1.9± 0.6 1.8± 0.5
ECog-SP-total 1.2± 0.3 2.8± 0.5 1.7± 0.6

(CDR-SOB, Clinical Dementia Rating Scale Sum of Boxes; ADAS-Cog-13, Cognitive subscale 13; MMSE,
Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; FAQ, Functional Activities
Questionnaire; RAVLT-immed, Rey Auditory Verbal Learning Test-immediate; RAVLT-learn, Rey Auditory Verbal
Learning Test-learning; RAVLT-percforg, Rey Auditory Verbal Learning Test-percent forgetting; ECog-PT-total,
Everyday Cognition participant; ECog-SP-total, Everyday Cognition Study Partner). The subjects were grouped
into 48 normal controls (NC), 39 Alzheimer’s disease (AD) patients and 104 Mild Cognitive Impairment (MCI)
subjects. The database consisted of 114 males (M) and 77 females (F).

2.2. Cognitive Assessment

We considered 24 clinical measures available for each participant in the ADNI Neuropsychological
Battery table. This table includes multiple cognitive and functional assessments about memory
deficits and behavioral symptoms commonly used as screening tools for detecting dementia and AD.
Since some cognitive batteries correlate significantly with each others, we performed a correlation
analysis in order to retain only indices with a mutual correlation coefficient R < 0.75. Finally,
we included the following S = 10 clinical measures in the outcome matrix Y of our analysis: CDR-SOB,
ADAS-Cog-13, MMSE, MoCA, FAQ, RAVLT-immediate, RAVLT-learning, RAVLT-percforgetting,
ECog-PT-total and ECog-SP-total. They are detailed as follows:

http://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNI2_GE_3T_22.0_T2.pdf
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• Clinical Dementia Rating Scale Sum of Boxes (CDR-SOB) is the index most used in clinical
practice for evaluating disease severity including the mild and early symptomatic stages of
dementia. The CDR is obtained through semistructured interviews of patients and informants,
and cognitive functioning is rated in six functional domains: memory, home and hobbies,
personal care, judgment and problem solving, community affairs and orientation. Each domain
is rated on a 5-point scale: 0, no impairment; 0.5, questionable impairment; 1, mild impairment;
2, moderate impairment; and 3, severe impairment. The final CDR-SOB score is obtained by
summing each of the domain box scores, with scores ranging from 0 to 18 [25].

• The cognitive subscale (ADAS-Cog-11) comprises 11 tasks that include both subject-completed
tests and observer-based assessments. The tasks assess cognitive functioning of memory,
praxis and language. Specific tasks comprise Naming Objects, Word Recall, Fingers, Commands,
Orientation, Word Recognition, Constructional Praxis, Ideational Praxis and Language [26].
The extended version, i.e., the ADAS-Cog-13, includes all ADAS-Cog-11 items as well as a test of
delayed word recall and a number cancellation or maze task [27].

• The mini-mental state examination (MMSE) assesses various cognitive domains,
including memory, attention and language. Scores for MMSE range from 0 to 30; lower scores
indicate greater cognitive dysfunction [28].

• The Montreal cognitive assessment (MoCA) consists of 12 individual tasks (grouped into cognitive
domains, including visuospatial and executive functioning, attention, language, abstraction,
naming, delayed memory recall and orientation), most of which are binary, and are scored and
summed with a 6-item orientation screening and an educational correction to generate a total
score representing the global cognitive functioning [29].

• The Functional Activities Questionnaire (FAQ) rates the instrumental activities of daily living
(IADLs), such as preparing meals and managing personal finances [30]. The sum scores range in
the 0–30 interval and the cut-point of 9 (dependent in 3 or more activities) is recommended to
indicate possible cognitive impairment.

• The Rey auditory verbal learning test (RAVLT) consists of five presentations of a 15-word list
(List A), each followed by attempted recall. This is followed by a second 15-word interference
list (List B), followed by recall of List A. It scores different aspects of episodic memory such as
the learning rate (learning and immediate RAVLT) but also delayed recall (forgetting and percent
forgetting RAVLT) [31].

• The Everyday Cognition (ECog) scale is an informant-rated questionnaire that includes one global
factor and six domain-specific factors. The psychometric properties in the ECog scale focus on
everyday function and cognition mild problems reported from both both participant (ECog-PT)
and study partner (ECog-SP) [32].

3. Methods

3.1. Image Processing

The following steps were performed to reconstruct the brain connectivity of each subject from the
raw DWI scans. First, we acquired the raw DICOM images from the ADNI database. We converted the
DICOM images into the NIFTI format by using the MRIcron suite (https://www.nitrc.org/projects/
mricron). Then, we organized the NIFTI images into the BIDS standard format. We executed all the
processing steps by using the MRtrix3 software package (http://mrtrix.org [33,34]), including scripts
interacting with the package FSL FMRIB Software Library (FSL) https://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/ [35] for some steps. In detail, the DWI images were processed by performing some standard
steps, as described in our previous works [24,36]. First, we applied a denoising step to enhance the
signal-to-noise ratio (SNR) of the MR signals. The FSL’s eddy correct tool was applied to correct the
head motion and eddy distortion in each subject by performing alignment of the DWI scans to the
average b0 image. Skull-stripping was done with the brain extraction tool (BET) [37]. A correction field

 https://www.nitrc.org/projects/mricron
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was firstly estimated from the b0 image, and then we applied the bias-field correction to all volumes.
The software tool fsl_anat was applied to process the T1-weighted anatomical scans and re-orient them
to the standard image MNI152. The inter-modal registration between the T1-weighted anatomical
image and the DWI for each subject was the last step.

We applied the connectome pipeline to generate the structural connectome by firstly generating a
tissue-segmented image [38] and then by applying unsupervised estimation of gray matter, white matter
and cerebro-spinal fluid response functions. The fiber orientation distributions (FOD) for spherical
deconvolution [39] was finally estimated. To generate the probabilistic tractography [40] using both
dynamic seeding [41] and anatomically-constrained tractography (ACT) [42], the Spherical-deconvolution
Informed Filtering of Tractograms (SIFT2) methodology was applied [41]. Finally, we mapped the resulting
streamlines through an anatomical parcellation scheme using the AAL2 atlas [43] with 120 regions
obtaining the connectivity matrix from the streamlines file and the atlas.

3.2. Network Metrics

A 120× 120 weighted symmetric connectivity matrix W was obtained for each subject as output
of the image processing steps; the entry wij of W represents the number of fiber tracts connecting
region i to region j.

Several topological metrics exist to assess the importance of the regions with respect to the rest of
the network. In this pilot study, we chose to explore the most intuitive metrics to quantitatively describe
the centrality and influence of the network of each region. In detail, the following graph metrics were
extracted from each matrix W and for each node of the network i = 1, . . . , N, with N = 120:

• The node strength is a direct measure of centrality that characterize the relative importance of a
node in a network by considering the weights of all the links of a node:

si =
N

∑
j=1

wij (1)

• Eigenvector centrality assesses the influence of a node in a self-referential manner by computing
the centrality for a node based on the centrality of its neighbors [44]:

eigi =
1
Λ

N

∑
j=1

wijeigj, (2)

where Λ is the largest eigenvalue associated with the eigenvector of the matrix W.
• The local efficiency of a node E(Gi) characterizes how well information is exchanged by its

neighbors when it is removed [45]:

E(Gi) =
1

ni(ni − 1) ∑
j∈Gi

1
d(i, j)

, (3)

where Gi is the local subgraph including the immediate neighbors of the node i, ni denotes the
total nodes in the subgraph Gi and d(i, j) denotes the length of the shortest path between the
node i and another neighbor node j obtained by minimizing the sum of the weights of the links
connecting the two nodes.

We used the MATLAB implementation of Brain Connectivity Toolbox (BCT) [21] to compute the
graph metrics. We finally constructed two matrices of features:

1. The M× P1, (M = 191, P1 = 7140) matrix X1 has as features the elements of the upper triangular
matrix W of each subject. Thus, this matrix includes the connectivity-related weights.

2. The M × P2, (M = 191, P2 = 360) matrix X2 has as features the three network metrics
(e.g., strength, eigenvector centrality and efficiency) for each ROI. Accordingly, each feature
is labeled as: “graph metric—roi”. This matrix describes the central role of each brain region.
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3.3. Machine Learning Framework

Here, we developed a machine learning framework to:

1. identify a generalized index that effectively summarizes the cognitive spectrum of the population
under investigation;

2. find significant associations between the identified index and the features derived from the
structural connectivity of the subjects; and

3. identify the most important features in order to understand the strongest biological associations
between the structural connectivity and cognitive spectrum.

The main steps are shown in Figure 1. Briefly, V = 10 re-sampling of a k-fold (k = 10)
cross-validation was executed, producing T = 100 subsets of X1, X2 and Y datasets. In each iteration,
nine folds of the score matrix (i.e., YTRAIN) were input to the first module to find a single generalized
cognitive score ZTRAIN from the ten clinical indices by means of principal component analysis (PCA).
The new score was validated by using a clustering-based analysis in conjunction with the diagnosis
labels LTRAIN for each subject provided in the ADNI Neuropsychological Battery table. Within each
cross-validation round, we trained a Lasso regression model for each dataset X1TRAIN and X2TRAIN .
We finally tested the two trained model on the left out fold X1TEST and X2TEST to predict ZTEST and
evaluate the most effective connectivity dataset. We also used the weights βij of the best Lasso models
to identify the particular subset of features that yields the best performance by means of a stability
analysis [46]. Each step of the framework is detailed in the next sections.

Figure 1. Machine learning framework: V = 10 re-sampling of a k-fold (k = 10) cross-validation were
executed, producing T = 100 subsets of X1, X2 and Y datasets. In each iteration, nine-folds of the score
matrix (i.e., YTRAIN) were input to principal component analysis (PCA) to find a single generalized
cognitive score ZTRAIN from the ten clinical indices. A Gaussian Mixture Models (GMM) clustering
analysis was executed to compare the data-driven partitions with the diagnosis labels LTRAIN for
each subject provided in the ADNI Neuropsychologica Battery table. Within each cross-validation
round, a Lasso regression model was trained for each of the two datasets X1TRAIN and X2TRAIN . The two
trained models were tested on the left out fold X1TEST and X2TEST to predict ZTEST and evaluate the
most effective connectivity dataset. The weights βij of the best Lasso models were employed to identify
the particular subset of features that yields the best performance.
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3.3.1. Identification and Validation of the Generalized Cognitive Score

We applied PCA [47] to find a comprehensive cognitive score from a set of partially correlated
clinical variables while accounting for the maximum percentage of their total variance. PCA has
been broadly adopted in clinical applications to reduce the dimensionality of large datasets in an
interpretable way, while preserving the statistical information of the data [48,49]. Thus, we computed
the first component of the matrix of the clinical scores within each training fold (i.e., YTRAIN) to obtain
the vector of the generalized scores ZTRAIN for the training samples as:

ZTRAIN = YTRAIN ∗ c1 (4)

where c1 is the corresponding vector of coefficients of the first component.
Then, the generalized scores ZTEST for the test data were computed by using the coefficients

obtained from the PCA of the training dataset:

ZTEST = YTEST ∗ c1 (5)

The contribution of each variable to the explained variance of the first principal component across
the rounds was quantified to describe the final composition of the generalized score.

Moreover, we performed a clustering analysis to provide a clinical validation of the computed
score, as follows:

• Gaussian mixture models (GMM) were adopted to model ZTRAIN as a mixture of unimodal
distributions in which each mode corresponds to a different subpopulation [50]. This clustering
algorithm involves the Expectation Maximization (EM) technique for automatically estimating
the parameters of the individual distribution components [51].

• The normalized mutual information (NMI) [52] between the set of identified subpopulations and
the set of diagnostic labels (e.g., NC, AD and MCI) for the training samples was computed to
assess the percentage of overlap between the two partitions.

This procedure shown in Figure 2 returns a metric of reliability of the new generalized score
in the diagnostic domain since the NMI value indicates the level of agreement between the clusters
identified in an unsupervised manner by using only the score and the corresponding diagnostic labels
of the subjects belonging to each cluster. We also performed a permutation test to assess the statistical
significance of the overlap between the identified clusters and the clinical groups. In detail, a null
distribution was generated by randomizing group labels 10,000 times and by calculating the NMI
value between the GMM clusters and the permuted labels at each permutation. Finally, a p value was
assigned as the number of times that the permuted overlap was greater than the actual NMI values,
divided by the number of permutations. We used the MATLAB GMM implementation provided by
the Statistics and Machine Learning Toolbox (https://it.mathworks.com/products/statistics.html).

3.3.2. Association between Connectivity and Generalized Cognitive Score

Lasso (Least Absolute Shrinkage and Selection Operator) [53] was employed to find significant
associations between the connectivity features and the proposed generalized cognitive score. Indeed,
Lasso is a regularization method that was introduced to solve both overfitting and multicollinearity
problems in ordinary least square regression. This approach involves a penalty term that controls
the complexity of the model by introducing sparsity. This term penalizes the coefficients of the least
significant variables shrinking some of them to zero so only the most important features are retained.
The outcome is a subset of the predictors that contribute mostly to the regression model, so the
algorithm is also used as embedded feature selection method. The goal of this method is to minimize
the residual sum of squares (RSS) to find the coefficients of the predictors:

RSS =
1
2
||ZTRAIN − βXTRAIN ||22 − λ||β||1 (6)

https://it.mathworks.com/products/statistics.html
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Figure 2. Illustrative example of clinical validation of the generalized scores resulting from PCA in a
single round: a cluster analysis with gaussian mixture models (GMM) was conducted to decompose
the distributions of scores into a mixture of unimodal distributions in which each mode corresponds to
a different cluster. The normalized mutual information (NMI) between the set of identified clusters
and the set of diagnostic labels (e.g., NC, AD and MCI) was used to assess the percentage of overlap
between the identified clusters and the clinical groups.

The λ parameter should be tuned for the optimization of the accuracy. We divided the training
set XTRAIN within each round into a training and validation set to find the best value of λ. Hence,
a single model was trained with the dataset XTRAIN within each round and it was tested on the left
out fold XTEST to predict ZTEST . We used the Statistics and Machine Learning MATLAB Toolbox for
Lasso implementation.

Within each round, we evaluated the performance of the model through the correlation coefficient
between the actual values of the generalized cognitive score zi of ZTEST and the model’s predicted
values ẑi:

R =
∑M

i=1(zi − z̄)(ẑi − ¯̂z)√
∑M

i=1(zi − z̄)2
√

∑M
i=1(ẑi − ¯̂z)2

, (7)

where z̄ and ¯̂z denote their sample means.

3.3.3. Identification of Significant Features

The output produced by Lasso within each round of cross-validation is a sparse vector of weights
β. We analyzed the matrix B = [β1, . . . , βT ] of size T × P, being T the number of iterations and
P the number of features. Since the matrix B is sparse, we considered only entries with non-zero
weight as features relevant to the target variable within each round of cross validation. Consequently,
we analyzed both the stability and the relevance of the features by applying a frequency-based criterion
and a threshold-based selection of their weights across the rounds. In particular, to identify the most
repeatable features among all the rounds, we selected only the features whose frequency was greater
than 99% percentile of the frequency distribution. In fact, a feature selection algorithm might be
sensitive with respect to changes in the training set, yielding subsets of features not representative of
the overall population under investigation [54]. The assessment of the stability of the selected features
over the rounds was thus carried out to select the list of more stable features with respect to small
changes in the training sets taken from the whole sample distribution [55,56].
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4. Results

4.1. Identification and Clinical Validation of the Generalized Cognitive Score

We performed the PCA of the ten cognitive scores in each round of cross-validation as described
in Section 3.3.1. As shown in Figure 3a, the average percentage of explained variance of the first
component over all the rounds is Var = 0.78± 0.02. This result suggests that the first latent variable
may explain the relationship between the ten observed variables, and it can therefore reasonably
represent a generalized cognitive score.

Then, we used the GMM algorithm to identify the optimal partition of the cognitive score into
clusters. We measured the overlap between the GMM clusters and the clinical groups by computing
the NMI score within each cross-validation round. The distributions of the actual NMI values and the
null distribution are shown in Figure 3b. A significant overlap between the GMM clusters and the
clinical groups was obtained with an average NMI value = 0.65± 0.09 (p = 0). Figure 3c represents
the average contribution of each clinical index to the generalized score. It is possible to note that
almost all the clinical indices contribute in the same amount to the generalized score, except for FAQ,
RAVLT-immed and ECog-PT-Total, which show a contribution below 8%.

(a) (b)

(c)

Figure 3. (a) Empirical probability distribution of the variance explained by the first component
of the ten indices. (b) Empirical probability distributions of NMI values for the actual labels and
permuted labels. (c) Contribution of each clinical index to the explained variance of the generalized
score averaged across the validation rounds.
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4.2. Best Model Selection

Figure 4 shows the boxplots of the correlation coefficient between the actual values of the
generalized cognitive score and the predicted values resulting from the Lasso algorithm by using both
the connectivity features, i.e., the connectivity weights (matrix X1) and the local connectivity metrics
(matrix X2). To compare the performance achieved with the proposed generalized cognitive score,
we also performed the association analysis with each of the ten clinical indices. Table 2 summarizes
the mean and standard deviation quantities of the distributions of correlation coefficients.

Figure 4. Correlation between the actual values and the values predicted by Lasso algorithm of the
generalized cognitive score and each of the ten clinical indices by using both connectivity weights
(matrix X1) and local graph metrics (matrix X2) as features.

Table 2. Mean and standard deviation quantities of the distribution of correlation coefficients between
the actual values of each clinical index and the values predicted by Lasso regression algorithm.

Clinical Index X1 X2

Generalized score 0.57± 0.11 0.70± 0.05
CDR-SOB 0.39± 0.14 0.49± 0.09

Adas-Cog 13 0.51± 0.13 0.60± 0.07
MMSE 0.42± 0.15 0.60± 0.07
MoCA 0.50± 0.13 0.56± 0.06
FAQ 0.36± 0.11 0.47± 0.07

RAVLT-immed 0.40± 0.10 0.51± 0.07
RAVLT-learn 0.39± 0.18 0.59± 0.07

RAVLT-percforg 0.42± 0.14 0.54± 0.07
ECog-PT-total 0.41± 0.14 0.48± 0.08
ECog-SP-total 0.37± 0.11 0.47± 0.08

As clearly shown in Figure 4 and Table 2, higher performance is achieved by using the generalized
cognitive score in comparison to each of the clinical indices. We also performed a Wilcoxon
rank-sum test to compare the distributions of R values resulting from the generalized score and
the other clinical indices finding that the generalized score performed significantly better than the
others for both matrices X1 and X2 (p < 0.0001 for each comparison). Moreover, the model with
the graph metrics as features shows significantly greater performance (average R = 0.7 ± 0.05,
Wilcoxon rank-sum test p < 0.0001) than the model that employs the entire structural connectivity
matrix (average R = 0.57± 0.11), highlighting that a local description of the connectivity of each
individual could adequately predict the generalized cognitive score. We found λ = 0.62± 0.1 for X1

and λ = 0.25± 0.1 for X2 across the rounds.
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4.3. Identification of Significant Features

The relative frequency of the selected features and their average weights (βi) were evaluated
across the validation rounds to rank the importance of each feature for the most performing matrix X2.

As can be noticed in Figure 5, a strong correlation exists between stability, i.e., greater frequency
of occurrence in different validation rounds, and average weights of features resulting from the Lasso
models. In particular, the most stable features (i.e., those with an occurrence greater than 70%) for both
negative and positive association with the generalized cognitive score are shown in the bottom part of
Figure 5. In Table 3, the same regions with their MNI coordinates are also specified. It is worth noting
that, for both positive and negative associations, the nodal efficiency of the regions prevails over the
other two graph metrics.

Figure 5. (Top) Weights vs. stability of the X2 features across all the validation rounds; (bottom left)
the most stable features with the highest negative associations with the generalized cognitive score;
and (bottom right) the most stable features with the highest positive associations with the generalized
cognitive score.

Table 3. Most stable features and their association with the generalized cognitive score.

ROIs Abbreviation (MNI Coordinates) Graph Metric Association

Right anterior cingulate gyrus ACG.R (8.46, 37.01, 15.84) E negative
Left inferior occipital gyrus IOG.L (−36.36, −78.29, −7.84) E negative

Right pallidum PAL.R (21.2, 0.18, 0.23) E negative
Left thalamus THAL.L (−10.85, −17.56, 7.98) E negative

Left superior temporal gyrus TPOsup.L (−39.88, 15.14, −20.18) S negative
Right superior temporal gyrus TPOsup.R (48.25, 14.75, −16.86) S negative

Left middle frontal gyrus MFG.L (−33.43, 32.73, 35.46) E positive
Right middle frontal gyrus MFG.R (37.59, 33.06, 34.04) E and eig positive

Left anterior cingulate gyrus ACG.L (−4.04, 35.4, 13.95) eig positive
Right postcentral gyrus PoCG.R (41.43, −25.49, 52.55) E positive

Left inferior parietal gyrus IPL.L (−42.8, −45.82, 46.74) S positive
Left cerebellum 6 CRBL6.L (−23.24, −59.10, −22.13) E positive
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5. Discussion

In this study, we combined all the cognitive clinical indices of a mixed ADNI cohort of AD,
MCI and NC subjects in a data driven manner to extract a generalized score reflecting multiple
cognitive domains. The final composition of the generalized index showed in Figure 3c indicates
that almost all clinical indices contribute in the same way to the generalized index, highlighting the
importance of multiple cognitive domains covered by the tests and clinical questionnaires. We clinically
validated the new generalized score by using an unsupervised approach. Our results show that the
new score explains a percentage of variance of all the indices greater than 70% and that the partitions
identified with the clustering algorithm significantly overlap with the clinical labels in the database as
shown in Figure 3. Then, we applied a machine learning regression algorithm to: (i) investigate the
strength of association between the generalized score and the structural connectivity of the subjects;
and (ii) identify the connectivity features most related to the generalized score. We also investigated
the association between the connectivity patterns and each of the clinical index included in the ADNI
database. Our analysis revealed a stronger association between structural connectivity and generalized
score than between the other clinical indices, showing the highest correlation index between the actual
and predicted scores (R = 0.7). It is important to note that this score was introduced to summarize
the different cognitive functional domains, maximizing the variance of the different clinical indices in
order to test the association between the topological organization of structural connectivity and a single
quantitative index through a regression algorithm. However, as shown in Table 2, both Adas-Cog and
MMSE indices exhibit significant associations with the structural connectivity indices, reporting the
same performance (R = 0.6).

These two indices are widely recognized as the most reliable for the cognitive assessment in the
clinical setting. The associations of these two indices with some MRI biomarkers have been explored
in other works. In [11], relevance vector regression (RVR) algorithm based on different feature
extraction approaches was used to predict MMSE scores by using tissue density maps extracted from
the MRI images of an ADNI cohort of 122 subjects. They found a correlation between the estimated
and the measured MMSE scores around 0.73 obtained by using regional features. Zhang et al. [12]
adopted a joint-prediction strategy to estimate two regression variables (MMSE and ADAS-Cog)
and one classification variable (i.e., clinical label) of 186 ADNI subjects, from the baseline MRI,
PET and CSF data achieving R = 0.697 ± 0.022 for MMSE prediction and R = 0.739 ± 0.012 for
ADAS-Cog prediction. Similar results were achieved in [57–60] by using a joint regression and
classification approach and multimodal imaging. Such approaches are focused on clinical classification
of the subjects, hence combine clinical label and clinical scores to build a more robust classification
model by taking into account the information of the relation between the high-level clinical label
and clinical scores as well as the relation among samples in the feature selection step. More recently,
Huang et al. [61] outperformed other state-of-art regression models by using normalized volumes of
90 brain regions together with a nonlinear sparse learning model version of random forest (RF) to
predict CDR-SOB, MMSE and ADAS-cog scores. These works underline some important aspects of
disease staging in AD: (i) more complex nonlinear models could better characterize real relationship
between the applied features and the clinical scores; and (ii) multimodal imaging could considerably
improve the accuracy of machine learning models by providing complementary information to better
recognize neurodegenerative patterns. We carried out a preliminary exploratory analysis of the
association between the structural connectivity derived from the single DTI modality and a new
score representative of the maximum information content of the ten clinical indices. For this reason,
we adopted a less complex model in favor of a direct interpretability of the features more strongly
related to the regression task. Indeed, both l1 and l2 norm regularization methods were extensively
employed to extract features that have impact on the clinical scores, based on the assumption that a
given imaging marker can affect multiple cognitive scores and only a subset of the features are relevant
for the regression task [62]. These models are often used to perform feature selection as sparsity is
imposed by regularization methods to extract the most important predictors [63,64]. It is important to
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underline that a critical interpretation of the results must take into account the different dimensionality
of the datasets (i.e., P1 >> P2). A high number of superfluous predictors may lead to models that
overfit the training data and fail to generalize on the test data, even when regularization algorithms are
adopted [65]. Further investigations could clarify the worst performance achieved with the dataset X1.
As an example, more objective comparisons between the two datasets could be reached by including
more subjects in the analysis.

In addition, we performed a stability analysis on the features selected across all validation
rounds in order to derive the most significant set of features for the generalized score prediction
task, regardless of the subpopulation extracted in a specific validation fold. As shown in Figure 5,
this stability analysis revealed only few stable structural connectivity markers significantly associated to
the generalized score. In particular, bilateral superior temporal pole, right anterior cingulate cortex and
left inferior occipital were found negatively associated with the proposed score. Volumetric reduction,
atrophy increase and WM integrity changes of the cingulate, occipital gyrus and temporal pole
have been found in AD progression [66–69]. In several studies, DTI brain networks were used to
analyze the main differences between some topological metrics in the AD, NC and MCI groups.
In particular, decreased global efficiency and reduced nodal efficiency in cingulate cortex and several
prefrontal regions were found in AD and amnestic MCI [16,70]. These findings are consistent with
our results that show a strength decrease of both left and right superior temporal pole and reduced
efficiency in the other regions. Moreover, as shown in Table 3, the efficiency metric prevails over the
other two graph metric, evidencing that this metric could better capture the cognitive decline in AD.
The local efficiency measures the ability of information exchange of the subnetwork consisting of
itself and its direct neighbors, thus it could detect the nodes that play a key role in the information
integration [71]. Interestingly, we also found features positively associated with the generalized
cognitive score, i.e., their values increase, as the cognitive impairment increases. Such findings could be
related to structural reorganization of brain connectivity and compensatory processes such as resilience
mechanisms to cognitive decline [72]. It is noteworthy that our work explicitly addresses an association
analysis between structural connectivity and cognitive spectrum. However, numerous studies have
exploited functional magnetic resonance imaging to correlate functional connectivity to a patient’s
cognitive status [73]. A future study using both modalities could better highlight functional and
structural connectivity patterns associated with the cognitive spectrum in AD.

6. Conclusions

In this study, we found that a generalized cognitive score obtained in a data-driven manner
by combining the available clinical cognitive scores is more significantly associated with structural
connectivity. In particular, we showed that some local topological descriptors of structural connectivity
can effectively track cognitive impairment in Alzheimer’s disease. These promising results suggest
that structural DTI networks contain clinically relevant information about cognitive function and can
be developed into biomarkers to describe cognitive decline associated with AD. In future work, we will
test more complex nonlinear machine learning models on a larger data sample to further investigate the
relationship between the cognitive status and the topological organization of the structural connectivity
networks in a more heterogeneous aging population.
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